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The problem of stability of motion of nonholonomic systems was first conside- 
red by Whittaker in [l], and developed in [2-‘73 et al. The most general results 
in investigating the stability of equilibrium of conservative nonholonomic sys- 
tems and in clarifying the influence of the dissipative forces on this stability, 
were obtained in [5$ In the present paper we give a further generalization of 
the results obtained in [5]. 

1. Let us consider a scleronomous conservative mechanical system constrained by 
nonholonomic constraints Linear in velocities. The generalized velocities qr’, . . ., qn* 
axe assumed connected by m < n nonintegrable relations of the form 

(1.1) 

We write the equations of motion in the Voronets form 

d ae 
-y= 
dt aq + 

28 = 2 Uij' @) Qi'Qj' 

Here’ 28 and 8, represent the results of eliminating q=’ by means of the relations (1.1) 
from 2 T and c3TliYq’a , respectively, where T is the kinetic energy and Lr is the force 
function. Let us consider an arbitrary point 

Q, = P,o, q; = 0 

belonging to the manifold of equilibria 

av+&--- ai a* d =o, qs’=O 

344 a aqa 

(1.3) 

(1.4) 

ofthesystem(1.1),(1.2)(hereandhenceforthi, j=i, . . . . n-mm; a, p=n-m -I- 
1 , * * *, n; s = 1, . . ., n) and formulate the problem of stability of the equilibrium( 1.3). 

8. Letusset 

in the perturbed motion [S]. Then the equations of perturbed motion assume the form 

x~’ = 2 dii (z) zi’ 
(2.1) 

i 
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x* (“i* xaV Xi’) = X fqio + up qao + xa + 2 ddli (q,J xi% xi’), X = da,, 6, e,, vaa 

v=ij denote the expressions within the squaretbrachets in (1,2), Qi (5) are funcKons the 
expansion of which in powers of XJ begins with terms of at least second order, (. . Jo 
means that the expression contained within the curly brachets is comptted at the point 
qs = qsoy wb are constants (also dependent on qJ0) which will not appear in the condi- 
tions of stability or instability and are therefore not given in their explicit form, and 
da** (0) = 0 c51. 

We note that - vij + ~tj coincide with the coeffkients of the second variaKon of 
the force function computed at qJJ with (1.1) taken into account. 

The characteristic equation of the first ap~~rnati~ system for (2.1) has the form 

(2.2) 

consequently the problem of stability of solution (1.3) of the system (I.. l), (L 2) (or of 
the solution 5 = 2’ = 0 of (2.1)) [3] can be reduced to that of investigating the roots 
of the equation 

which is the characteristic equation for the system 

2 aGYj” I+ xv(jYj = 2 PfjYj 
j j j 

(2.4) 

containing the potential forces and the nonconservative eigen forces. The latter will 
Vanish when all pij = 0, i.e. all 

In this case the problem of stability of equilibrium of the nonholonomlc system is solved 
simply enough and, in some sense, similarly to the problem of stabs of equilibrium 
of a holonomic system. 

8, Theorem 3. 1. If 2V= Xvljyy has a minimum at the point t = 0, then 
with the condition (2.5) holding, the equilibrium ( 1.3) of the system (1. l), (I.. 2) is sta- 
ble in the first approximation. 

Proof. We consider 
w=CP+v- 

i 
ZWi@X& + -iJ- cX2; 

If V has a minimum, then, obviarsly, we can always choose such c > 0 that liy is po- 
sitive-definite in zi’, si and xa. Let us inspect the total time derivative of W , taking 
due mgard of (2.1) (where dl pij = 0); after simple transformations we find that w = 
XQj’ (2) zj , tie= the expansion of Qj’ (~1 in powers of z, begins with terms of at least 
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second order, i.e. the expansion w’ in powers of zs and xi’ is of at least third order. 
This proves Theorem 3.1. 

Theorem 3. 2. If 77 has no minimum at 5 = 0 and can assume negativevalues, 
then with the condition (2.5) holding, the equilibrium (1.3) of the system (1. l), (1.2) is 
unstable. 

The proof is obvious. The equation (2.3) has a root in the right semiplane. 
Theorem 3. 3. When the conditions of Theorem 3.1 hold, then addition of arbit- 

rarily small dissipative forces with full dissipation in qi' , makes the equilibrium (1.3) 
of the system (1. l), (1.2) ,which is stable in the first approximation, Liapunov stable. 
When the dissipative forces are added, the right-hand sides of (1.2) and of the second 
group of equations of the system (2.1) must be supplemented by the terms a@ / aqi’ and 
aa,* I axi’ , respectively, where 2 tD = X jij’ (q) q<qj’ is the result of eliminating qa’ 

with the help of (1.1) from the dissipative Rayleigh function 2~ = 2P fr,, qr’) 

@* (Zi, Xa7 Xi')= @(qio + Xi9 4ao+ Xa + z'ai(q~I) xi' "i') 

i 

The equations (2.2) and (2.3) now respectively become 

hm det [a&‘+ uti - pti + f$l= 0, fij = fu’.(q,J (3.1) 
det 1a~J.s + vij - Pij + fijX I= 0 

The proof of Theorem 3.3 now follows from the Aiserman-Gantmacher theorem @&since 
all roots of (3.1) lie, under the conditions of Theorem 3.3, in the left semiplane. 

Theorem 3.4. No dissipative forces can stabilize a position of equilibrium which 
is unstable under the conditions of Theorem 3.2. The proof is obvious. 

Corollary 3. 1. Theorems3.1-33.4arevalidfornonholonomic systemswitha 
single independent velocity (n - m = 1, as in this case the condition (2.5) holds neces- 
sarily). 

Corollary 3.2. If V has a minimum and a number of independent velocities is 
unity (n - m = I), then the equilibrium (1.3) of the system (I.. 1). (1.2) is stable in 
any order approximation. 

Proof. From the proof of Theorem 3.1 it follows that in this case 

W’ = Ql’ (~1, 2,) 31’ = 1~‘~’ (11, z a ) + q~‘s’(z1 x ) + ] 31’ ‘0 . . 

Obviously, a function $(a) (x1, x,) such that q(2) = %$a)/~x, , always exists. 
Consider w, = W - #“) . We then have 

Thus w, begins with the terms of at least fourth order, W1 is positive definite in 51, 
x1’ and z= (since the quadratic part of W is positive definite and a third order form is 
added to W ). Similarly, we can find that the function W, = W, - qlc4) ((PI@) = L~I$*) I 

hl) is positive definite in x1, xl' and z=, and the expansion of W,’ begins with the 
terms of fifth order, etc. , which proves Corollary 3.2. 
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4, Let us now consider a general case when not ail pij = 0. We at first assume that 
dissipative forces are absent. 

Theorem 4. 1. If Zv+jAG<O, where Aij represents the algebraic complement 
of the element aij of the matrix {Uij}, then the equilibrium (1.3) of the system (1. l), 
(1.2) is unstable. 

The proof follows from the corollary of Theorem 9 of @I. 
Corollary 4. 1. If V has a maximum at 5 = 0, then the equiIibrium(l.3) of 

the system (1. l), (1.2) is unstable. 
Theorem 4.2. If V hasaminimumandtherootsoftheequation det(paij- 

Vij II = 0 are all equal, then the equilibrium (1.3) of the system (1. l), (1.2) is unstable. 
The proof follows from Theorem 4 of [S’J, 
Let us ngw investigate the effect of the dissipative forces. 
T he ore m 4.3. If V has a minimum and fij = hf$, then at sufficiently large i 

the equilibrium (L 3) is stabb. 
The proof follows from Theorem 2 of [lo] and a theorem of [3]. 
N o t e 4. 1. Theorem 4.3 shows that an equilibrium unstable under the conditions 

of Theorem 4.2, can be stabilized by suitable choice of dissipative forces. 
Theorem 4.4. If v has a maximum, then the equilibrium (1.3) cannot be sta- 

bilized by any dissipative forces. 
The proof follows from Theorem 1 of [S]. 
N o t e 4. 2. An equilibrium unstable under the conditions of Theorem 4.1, can be 

stabilized by suitable choice of dissipative force.%. 
Example 4. 1. 

n - m = 2; al1 = aas = 1, al, = 0; VI1 = 1, v,, = - 2, vlr = 0 

p12 = - PSI = 3/*, fll = 1, fss = 3, fl2 = 0 

In this case Eq. (3.1) asumes the form 

I 

is+ a+ 1 s/s 
- Ye ??+35-2 =’ I 

It follows from the Hurwitz criterion that ail roots of this equation lie in the left semi- 
plane. 

6. N o t e 5. 1. The results obtained show that the problem of stability of equilib- 
rium of a nonholonomic system can be reduced,under certain conditions, to that of in- 
vestigating the function V which can be treated as the potential energy of the “reduced” 
system (2.4), and which coincides with the quadratic part of the function U* of [5], pro- 
vided that both parts of the condition (2.5) vanish (for ail i, j). However, if we do not 
limit ourselves to one method of reducing the problem of stability of equilibrium of a 
nonholonomic system by investigating only the behavior of the function V, then we can 
easily prove the following assertion: 

Theorem 5. 1. If deti vij - pij II< 0, then the equilibrium (1.3) is unstable 
whether the dissipative forces are present or absent. 

In fact, under the condition of Theorem 5.1, the free term of the characteristic equa- 
tion (3.1) is negative, consequently the equation has at least one positive root (irrespec- 
tive of whether fij = 0 or f+j # Oy. 
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Note 5. 2. Since (qso, 0) is an arbitrary point of the manifold of equilibria (1.4), 
the results obtained enable us to investigate the stability of all positions of equilibrium 
of the nonholonomic system (indeed, uijt pij and ati are all dependent on p,&. 

If the first group of equations of the manifold of equilibria (1.4) can be written in the 
form 

480 = % (u), u = {ur, . . ., “I} (I > m) (5.1) 

where u are the parameters of the surface (1.4) [4], then substituting (5.1) into the ex- 
pressions for UG, Pii and 4ii and applying the results obtained, we can separate on the 
surface (5.1) the regions of stable or unstable positions of equilibrium. 

6. N o t e 6. 1. The presence of linear terms in the expansion of the force function 
U near the point qso ({au / @Jo # 0) and hence in the energy integral, has not led to 
finding some hind of sufficient conditions of Liapunov stability for the equilibrium of a 
conservative (dissipative forces absent) system. Nevertheless, this is possible to achieve. 

Example 6. 1. Let us consider a nonholonomic system (n = 3, m = 1) represent- 
ing a particular case of the Bottema example [Z] and determined by the kinetic energy 
22’ = zaa + yea + s’*, force function U = z + l/s (49 + bya) and a nonintegrable con- 
atraint 2’ = cyz’ (6.1) 

Obviously, in this case the manifold (1.4) has the form 

x = g = 0, a = u; I’ = y’ = P’ = 0; u - is arbitrary (6.2) 

Near an arbitrary point of the manifold (6.2), the Voronets equations for the system in 
question have the form 

t” (1 + cay”) + +/y’s’ - 4x = cy, y" - by = 0 (‘3.3) 

Computing &‘U at the points (6.2), we obtain 

v.-- il - r:,, ::“I* Q=li_:,2 :A; %i =I; :I1 
I 

Then by Theorem 4.1 the equilibria (6.2) are unstable when --a--b < 0, i.e. when 
a + b > 0, and by Theorem 5.1 they are unstable when ab < 0, i.e. stability is possible 
onlywhen a<0 and b<O. 

Let a= - 02 and b = - CP. 

We consider any perturbed motion of the system (6.1),( 6.3). This motion will satisfy 
the conditions 

y = y, cos Qt + yb’ sin Pt = A sin (Qt + cp) (6.4) 

z” [1 + Aa c2 sins (Qt + cp)]+ A2 ca sin (Qt + cp) cos (Qt + cp) z’ + (6.5) 
o% = A o sin (Pt + cp) 

z’ = A c sin (hat + rp) z’ (6.6) 

where A and cpareexpressedintermsofy,and yo’,and A issrnallwheny,and~, 
are small. 

It can be shown that the zero solution of the homogeneous equation corresponding to 
(6.5) is stable for sufficiently small A and the condition 

~A02 < Ba (6. ‘U 

holding (according to the Liapunov criterion), while the inhomogeneous equation has a 
unique periodic solution the amplitude of which is small when A is small. Consequently, 
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the general solution of (6.5) ia small when po, v. , q, and 20 are sufficiently small 
and condition (6.7) holds. In this case P’ are also small, which follows from (6.6), as 
wellas I- ir which follows from the existence of the energy integral 

.$a + $8 + 2.2 + &$ + P*$ + 2 (u - z) = 2h 

and from the smallness of x’, y’, I’, r, 1y and tr under small initial perturbations. It fol- 
lows therefore that any solution (6.2) of the system (6.1),(6,3) is stable when b<fi’a<O. 

when b<O, a<0 and ~>~~u,~~~~~rn~~n. 
Investigation of the linear system shows that in this case any equilibrium (6.2) is stable 

in the first approximation if a # b, otherwise the equilibrium is unstable, 

7, E x am pl e 7. 1. Let us consider a system conaisting of three rough homogeneous 
cylinders; two identical cylinders each of radius r and mass m roll along an inclined 
plane, and the third cylinder of radius R. and mass Y rolls over the first two cylinders. 
We introduce a set of stationary coordinates on the inclined plane ; the 2 -axis is paral- 
lel to the horizontal plane, the v-axis is perpendicular to the z-axis and directed up- 
wards along the inclined plane. We denote the angle of inclination of the plane by a 
and the angles which the axes of the lower cylinders make with the x-axis, by fl and 
Y (g # y). We introduce the following generalized coordinates: angles tp, tpl and tpt of 
natural rotation of the up~zer cylinder and of two lower cylinders, respectively, the angle 
6 between the s-axis and the axis of the upper cylinder and the coordinates z and I 
of the center of mass of the upper cylinder. These six generalized coordinates are con- 
nected by faur nonintegrable relations [4] which can be reduced to the form 

5’ = Rep’ sin 9 + 6’ Ir fw sin y - ‘ps sin p) / sin (y - 8) - PJ] 

I/ *- 
- - W ’ CQS f.3 - @ b (f& Cos y - a Cos fi) / sin (y - B) - r] 

R* = - 8‘ {r [R sin te - El cos e>, [2r sib (e _ e,f’ - (Pa sin (8 - BN / sin tv - B) - r sin 0 + 

ipa’ = - 8’ ir I% sin (0 - v) - 98 sin (0 - fl)l/ sin (y - p) - 2 sin e + 
bc cos 8) / (2r sin (e - y)] 

The force function of the system (with the accuracy to within a cast) is 

u=-- Mgy sin a - mgr (Cpl Cos B + [Ps cos y) sin a 

and the manifold of equiIibria (1.4) in tbia case assumes the form 

e--n/2, x = r (t-p1 co9 y - gr, co9 6) I sin (Y - PI 

9% vl* CPST Y _._m&ihq; rp*=cpr*=~~*=~=~*=~‘=O 

Any point belonging to this manifold represents an unstable (with or without dissipative 
forces) position of equilibrium. This follows from Theorem 5.1 

In concIusian the author thanks v. v. Ihtmiants~~ for supervising this paper. 
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We investigate the propagation of waves generated by oscillations of a section 
of the bottom of a tank through a two-layer fluid, in the presence of a dock, 
Wave motions in an inhomogeneous fluid generated by displacement of a sec- 
tion of the bottom of a tank were studied in [l] where the upper surface of the 
fluid was assumed either to be completely free, or completely covered with ice. 
In the present paper we use the method given in [Z] to investigate a similar 
problem under the assumption that the fluid surface is partly covered with an 
immovable rigid plate. The expressions obtained for the velocity potential are 
used to determine the form of the free surface and of the interface. We show 
that when the fluid is inhomogeneous, the wave amplitude on the free surface 
increases, while the presence of a plate reduces the amplitude of the surface 
waves, as well as of the internal waves in the region between the plate and the 
oscillating section of the bottom. 

An immovable rigid plate occupying the region 9 = h, z < - I, --00 < a < CO is 
situated at the surface of two-layer fluid in which the density and depth of the upper and 
lower layer are denoted. respectively. by p, I and P1, H. The coordinate origin is situ- 
ated at the interface and the 9 -axis is directed vertically upwards. The bottom section 
1y= --,O<z<a, --oo < 2 < 00 is deformed according to the law 


