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The problem of stability of motion of nonholonomic systems was first conside~
red by Whittaker in [1], and developed in [2—7] et al. The most general results
in investigating the stability of equilibrium of conservative nonholonomic sys~
tems and in clarifying the influence of the dissipative forces on this stability,
were obtained in [5]. In the present paper we give a further generalization of
the results obtained in [5].

1, Let us consider a scleronomous conservative mechanical system constrained by
nonholonomic constraints linear in velocities, The generalized velocities g3’y .+« -y qn’
are assumed connected by m < n nonintegrable relations of the form

T a= Dde; @7 (L1
i
We write the equations of motion in the Voronets form
d 8 a@®+U) 0@8+U) 4. (L.2)
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Here'26 and 8, represent the results of eliminating g," by means of the relations (1. 1)
from 27 and 87/3¢, ,respectively, where T is the kinetic energy and U is the force
function, Let us consider an arbitrary point

4,=qy I, =0 (1.3)
belonging to the manifold of equilibria
U+ N 4,=0, g,=0 (1.4
9g; a 09,
of the system (1. 1), (1.2) (here and henceforth i, j =1, ..., n—mj a, B=n—m 4
1, ..., n; s=1, ..., n)and formulate the problem of stability of the equilibrium(1,3).

2, Letus set
q‘l = qio -+ Tis 9e = a0 + Lo _L— 2 dai (qao) ;
i
in the perturbed motion [5]. Then the equations of perturbed motion assume the form
z = Zd;i (z) = (2.1)
i
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3

Vqij denote the expressions within the square brackets in (1, 2), @Q; («) are functions the
expamsion of which in powers of z, begins with terms of at least second order, {. . .},
means that the expression contained within the curly brackets is computed at the point
95 = Qa0 Wy, are constants (also dependent on ¢,) which will not appear in the condi=
tions of stability or instability and are therefore not given in their explicit form, and
d,* (0) = 0 [5].

We note that — v;; -} p4; coincide with the coefficients of the second variation of
the force function computed at g4 with (1. 1) taken into account.

The characteristic equation of the first approximation system for (2, 1) has the form

xmdet“aﬁp_{.vﬁ—pﬁlzﬂ, aﬁ=au-’ (qw) (2,2)

consequently the problem of stability of solution (1. 3) of the system (1. 1), (1. 2) (or of
the solution z = z* = 0 of (2. 1)) [3] can be reduced to that of investigating the roots
of the equation

det | a;A* + ”ii"‘pi:'l‘_‘o (2.3)
which is the characteristic equation for the system
2 ay; H 2”{5.’/,‘ = 2 Pyi¥; (2.4)
i i i

containing the potential forces and the nonconservative eigen forces, The latter will
vanish when all p;; = 0, i,e, all

{Z aq, (8q +2 8 3q )} {2‘. (6qi BZ%%")}. (2.5)

In this case the problem of stabuity of equilibrium of the nonholonomic system is solved
simply enough and, in some sense, similarly to the problem of stability of equilibrium
of a holonomic system,

8, Theorem 3,1, If 2V = Zu;zx; has a minimum at the point # == 0, then
with the condition (2. 5) holding, the equilibrium (1, 3) of the system (1. 1), (1. 2) is sta-
ble in the first approximation,

Proof. We consider 1

W04V — me:ciza +3 cEzg

If ¥V has a minimum, then, obviously, we can always choose such ¢ > 0 that W is po-
sitive-definite in z;’, z; and z,. Let us inspect the total time derivative of W , taking
due regard of (2. 1) (where all p;; = 0); after simple transformations we find that W" =
=Qi (z) z; , where the expansion of Q; (z) in powers of z, begins with terms of atleast
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second order, i.e. the expansion W’ in powers of r, and x;" is of at least third order.
This proves Theorem 3, 1.

Theorem 3,2, If V has no minimum at z = 0 and can assume negative values,
then with the condition (2, 5) holding, the equilibrium (1, 3) of the system (1. 1), (1. 2) is
unstable.

The proof is obvious. The equation (2, 3) has a root in the right semiplane,

Theorem 3,3. When the conditions of Theorem 3. 1 hold, then addition of arbit-
rarily small dissipative forces with full dissipation in ¢;*, makes the equilibrium (1, 3)
of the system (1. 1), (1. 2),which is stable in the first approximation, Liapunov stable,
When the dissipative forces are added, the right-hand sides of (1. 2) and of the second
group of equations of the system (2, 1) must be supplemented by the terms a® / dg;" ard
od* / dz;" ,respectively, where 2@ = I f;;’ (¢) ¢i'g;" is the result of eliminating ¢,
with the help of (1. 1) from the dissipative Rayleigh function 2F = 2F (q,, ¢,’)

O (z;, 24, 2;") = P (050 + %5 a0+ %a +Zda1(1,.)1,, )

The equations (2. 2) and (2, 3) now respectively become

A" det o b+ vy — P+ FA =0 fy5 = 1,'(0,0) (3.1
det a4+ vy — by + fiyh] =0

The proof of Theorem 3. 3 now follows from the Aiserman-Gantmacher theorem [3],since
all roots of (3. 1) lie, under the conditions of Theorem 3, 3, in the left semiplane,

Theorem 3,4, No dissipative forces can stabilize a position of equilibrium which
is unstable under the conditions of Theorem 3,2, The proof is obvious,

Corollary 3.1, Theorems 3,1 3,4 are valid for nonholonomic systems with a
single independent velocity (»n — m = 1, as in this case the condition (2. 5) holds neces-
sarily).

Corollary 3.2. If V has a minimum and a number of independent velocities is
unity (» — m = 1), then the equilibrium (1, 3) of the system (1, 1), (1. 2) is stable in
any order approximation,

Proof. From the proof of Theorem 3, 1 it follows that in this case

W' = Q1 (11, 25) 21" = [P (21, 2,) + @ (1, 2) + . . .1 m

Obviously, a function ® (z,, z,) such that ¢® = 3y /az, , always exists,
Consider W, = W — ¥ , We then have

F:) ,b(s)
fr1

[ 3 Zdal a‘t + @4 :| 7 = [(p(l:’) + (pf‘) + ... 0m

dp®
Wy = W — ‘P

Zd 1’

=¥ - [¢® .. Jo1 —

Thus W; begins with the terms of at least fourth order, W, is positive definite in =z,
z;" and =z, (since the quadratic part of W is positive definite and a third order form is
added to W), Similarly, we can find that the function W, =W, — {,» (¢:® = @ /
dz;) is positive definite in z;, z,” and z,,and the expansion of W, begins with the
terms of fifth order, etc, , which proves Corollary 3. 2.
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4, Letus now consider a general case when not all p;; = 0. We at first assume that
dissipative forces are absent.

Theorem 4,1, If Zv;;4;; < 0, where A4;; represents the algebraic complement
of the element a;; of the matrix {a;;}, then the equilibrium (1. 3) of the system (1, 1),
(1. 2) is unstable,

The proof follows from the corollary of Theorem 9 of {8].

Corollary 4,1, If V has a maximum at z = 0, then the equilibrium (1. 3) of
the system (1. 1), (1. 2) is unstable,

Theorem 4,2, If Vv has a minimum and the roots of the equation det || pa;; —
v;j | = 0 are all equal, then the equilibrium (1, 3) of the system (1. 1), (1. 2) is unstable,

The proof follows from Theorem 4 of [9].

Let us now investigate the effect of the dissipative forces.

Theorem 4,3, If V hasa minimum and f;; = hf;;°, then at sufficiently large A
the equilibrium (1, 3) is stable,

The proof follows from Theorem 2 of [10] and a theorem of {3].

Note 4. 1. Theorem 4.3 shows that an equilibrium unstable under the conditions
of Theorem 4. 2, can be stabilized by suitable choice of dissipative forces.

Theorem 4.4, If V has a maximum, then the equilibrium (1, 3) cannot be sta-
bilized by any dissipative forces.

The proof follows from Theorem 1 of [9].

Note 4.2. An equilibrium unstable under the conditions of Theorem 4, 1, can be
stabilized by suitable choice of dissipative forces.

Example 4.1,

n—m=2a;=ag=1,a;3=0,v;, =1, v99=—2, v53=0
Pa=—Pa =3 fu=1 fa=3, ra =0
In this case Eq, (3. 1) assumes the form
A4 A1 3, 0
— 3 ABF3—2]

It follows from the Hurwitz criterion that all roots of this equation lie in the left semi-
plane,

5. Note 5. 1. The results obtained show that the problem of stability of equilib-
rium of a nonholonomic system can be reduced, under certain conditions, to that of in-
vestigating the function V which can be treated as the potential energy of the "reduced”
system (2, 4), and which coincides with the quadratic part of the function U* of [5], pro~
vided that both parts of the condition (2, 5) vanish (for all i, j). However,if we do not
limit ourselves to one method of reducing the problem of stability of equilibrium of a
nonholonomic system by investigating only the behavior of the function V, then we can
easily prove the following assertion:

Theorem 5,1, If det}v;; — p;;| < 0, then the equilibrium (1. 3) is unstable
whether the dissipative forces are present or absent,

In fact, under the condition of Theorem 5. 1, the free term of the characteristic equa-
tion (3. 1) is negative, consequently the equation has at least one positive root (irrespec-
tive of whether f;; = 0 or f;; == 0).



1092 A.V.Karapetian

Note 5.2, Since (g4, 0) is an arbitrary point of the manifold of equilibria (1.4),
the results obtained enable us to investigate the stability of all positions of equilibrium
of the nonholonomic system (indeed, vij, pi; and a;; are all dependent on g,,).

If the first group of equations of the manifold of equilibria (1.4) can be written in the
f

orm Gs0 =25 (), w={uy ..., u} (I>m) (5.1
where u are the parameters of the surface (1.4) [4], then substituting (5. 1) into the ex-
pressions for v;;, pij and ae;; and applying the results obtained, we can separate on the
surface (5. 1) the regions of stable or unstable pasitions of equilibrium,

6. Note 6,1, The presence of linear terms in the expansion of the force function
U near the point g ({9U/dg,}, # 0) and hence in the energy integral, has not led to
finding some kind of sufficient conditions of Liapunov stability for the equilibrium of a
conservative (dissipative forces absent) system, Nevertheless, this is possible to achieve.

Example 6.1, Let us consider a nonholonomic system (n = 3, m = 1) represent-
ing a particular case of the Bottema example [2] and determined by the kinetic energy
2T == z* 4 y'* 4-2'%, force function U = z 41/, (az* + by?) and a nonintegrable con-
straint = cyz (6.1
Obviously, in this case the manifold (1.4) has the form

x=p9=0, 2=u; 2=y =3 = 0; u— is arbitrary (6.2)

Near an arbitrary point of the manifold (6. 2), the Voronets equations for the system in
question have the form

2 (1 4% - Pyy's —az=cy, ¥ —by=0 (6.3)
Computing 62U at the points (6. 2), we obtain
i _Jt o
© %W T o 4

|- —cf2 . l 0
= “_c/z —b |0 T2
Then by Theorem 4, 1 the equilibria (6, 2) are unstable when —g—b < 0, i.e. when
a - b > 0, and by Theorem 5, 1 they are unstable when ab < 0, i. e, stability is possible
only when a << 0 and b < 0.

¢/2

Let a= — ®® and b = — Q2
We consider any perturbed motion of the system (6. 1),(6. 3), This motion will satisfy
the conditions .
Y = Yo €os Qt -y sin Q¢ = 4 sin (Q¢ + @) (6.4)

z" {1 | A? ¢? sin? (Rt - @)]+ A2 2 sin (Qt |- ) cos (Qt |- ) z° 4 (6. 5)
o’z = A ¢sin (Qt 4 ¢)
2 = Acsin (Qt 4-¢) &’ (6.6)
where 4 and ¢ are expressed in terms of y, and y,’,and 4 is small when y, and y,
are small,
It can be shown that the zero solution of the homogeneous equation corresponding to
(6. 5) is stable for sufficiently small 4 and the condition
n2e? < Q (6.7
holding (according to the Liapunov criterion), while the inhomogeneous equation has a
unique periodic solution the amplitude of which is small when A4 is small, Consequently,
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the general solution of (6. 5) is small when », w,, =, and %, are sufficiently small
and condition (6. 7) holds. In this case 2z’ are also small, which follows from (6.6), as
well as z —  which follows from the existence of the energy integral

2 4yt 0¥ Q%2 {-2(u—12) =2k
and from the smallness of z', ¥, 5°,z, y and % under small initial perturbations, It fol-
lows therefore that any solution (6. 2) of the system (6. 1),(6. 3) is stable when p <% <0.
when b < 0, a <0 and b > n2a, the question remains open.
Investigation of the linear system shows that in this case any equilibrium (6, 2) isstable
in the first approximation if @ == b, otherwise the equilibrium is unstable,

7. Example 7, 1, Letus consider a system consisting of three rough homogeneous
cylinders; two identical cylinders each of radius r and mass m roll along an inclined
plane, and the third cylinder of radius R.and mass M rolls over the first two cylinders.
We introduce a set of stationary coordinates on the inclined plane; the z~axis is paral-
lel to the horizontal plane, the y-axis is perpendicular to the z-axis and directed up-
wards along the inclined plane, We denote the angle of inclination of the plane by «
and the angles which the axes of the lower cylinders make with the z-axis,by p and
¥ (B + ). We introduce the following generalized coordinates: angles ¢, ¢; and @; of
natural rotation of the upper cylinder and of two lower cylinders, respectively, the angle
0 between the z-axis and the axis of the upper cylinder and the coordinates z and y
of the center of mass of the upper cylinder. These six generalized coordinates are con-
nected by four nonintegrable relations [4] which can be reduced to the form

¥ = Ro'sin @ 46" [r (g sin y — @y sin B) / sin (y — B) — y]
¥ = — R’ cos8 — 6 [r (g, cos y — g5 cos B) / sin (y — B) — 2l

G = — 6 {r[gsin (0 — ) — ggsin (& — B)] / sin (v — B) — = si
y cos 0} / [2r sin (8 — B)] 9a8in (8 — )} /sin (y —~ P) — zsin 0 4

@y = — 0 {r[p, sin (8 — y) — gy sin (6 — B)] / sin (v — B) — = si
’ycose}/(erlin PR g sin ( B)l / sin (y — B) — = sin 6

The force function of the system (with the accuracy to within a constant) is
U = — Mgy sin o — mgr (¢ cos P 4 ¢, cos y) sin
and the manifold of equilibria (1.4) in this case assumes the form
0==mn/2 z=r(p cosy— qcosf)/sin(y —f)
$r @1 @p y —are ambitrary; @ =@ =@ =0 =3 =y =0
Any point belonging to this manifold represents an unstable (with or without dissipative
forces) position of equilibrium, This follows from Theorem 5. 1
detﬂvﬁ— Pijﬂ= — M (M -+ m) Rtg3 gind ¢ <0
In conclusion the author thanks V, V, Rumiantsev for supervising this paper.
REFERENCES

1, Whittaker, E.T., A Treatise on the Analytical Dynamics, Cambridge Univ, Press,
1927,
2, Bottema, O.,On the small vibration of nonholonomic systems, Indag, Math, , Vol,



1094 A.V.Karapetian

10.

11, f. 4, 1949,

Aiserman, M., A, and Gantmacher, F, R, , Stabilitdit der Gleichgewichts~
lage in einem nichtholonomen System, ZAMM, Bd, 37, Hft, 1/2, 1957,

Neimark,Iu,I. and Fufaev, N, A,, Dynamics of Nonholonomic Systems,
Moscow, "Nauka”, 1967,

Rumiantsev, V, V,, On stability of motion of nonholonomic systems. PMM Vol,
31, N2 2, 19617,

Nikolenko, I, V., On the influence of nonholonomic constraints on the charac-
ter of the equilibrium of a system, Zzh, Prikl, mekhanika, Vol, 1,N\2 10, 1965,

Nikolenko, I, V,, On the stability of equilibrium of nonholonomic Voronets'
systems, UKkr, matem, Zh, , Vol, 20, N2 1, 1968,

Lakhadanov, V. M, , On the influence of structure of forces on the stability of
motion. PMM Vol, 38, N2 2, 1974,

Agafonov, S, A, , On the stability of nonconservative systems, Vestn, Mosk. Univ, ,
Ser, matem, mekhan, ,N2 4, 1972,

Karapetian, A, V,, On the stability of nonconservative systems. Vestn, Mosk,
Univ., Ser, matem, mekhan, ,N2 4, 1975, Translated by L. K.

UDC 532,593
WAVES IN AN INHOMOGENEOUS FLUID IN THE PRESENCE OF A DOCK

PMM Vol, 39, N2 6, 1975, pp. 1140-1142
V. F, VITIUK
(Odessa)
(Received July 9, 1973)

We investigate the propagation of waves generated by oscillations of a section
of the bottom of a tank through a two-layer fluid, in the presence of a dock.
Wave motions in an inhomogeneous fluid generated by displacement of a sec-
tion of the bottom of a tank were studied in [1] where the upper surface of the
fluid was assumed either to be completely free, or completely covered with ice.
In the present paper we use the method given in [2] to investigate a similar
problem under the assumption that the fluid surface is partly covered with an
immovable rigid plate, The expressions obtained for the velocity potential are
used to determine the form of the free surface and of the interface. We show
that when the fluid is inhomogeneous, the wave amplitude on the free surface
increases, while the presence of a plate reduces the amplitude of the surface
waves, as well as of the internal waves in the region between the plate and the
oscillating section of the bottom,

An immovable rigid plate occupying the region y =4, s — 1, —o0 {200 is

situated at the surface of two-layer fluid in which the density and depth of the upperand
lower layer are denoted, respectively,by p, h and p;, H. The coordinate origin is situ-
ated at the interface and the y ~axis is directed vertically upwards. The bottom section

y=—H, 0z a —oo <2< x is deformed according to the law



